China best OEM Core Competencies Steel Roller High Temperature Resistant Shaft Machine Part Steel Bar Drive Shaft

Product Description

Company  Profile

Established in 2009, HangZhou CZPT Trading Co., Ltd is a professional supplier for conveyor parts, located in ZHangZhoug province. We focus on supplying a variety of conveyor parts, including conveyor tubes, conveyor frames, conveyor rollers, bearing housings and so forth.

With our professional technology R&D team, and experienced quality control department, our products have been awarded the ISO9001 Quality Management System Standard and our main markets are in America, Europe, Asia and Australia.

Factory advantage

Professional and experienced technology team
All products inspected before shipping with reasonable prices
Low MOQ and free sample
We are audited by SGS and passed the ISO9001:2008 certification

Industries service

Industrial machine
Electronic and communication
Oil, gas,mining and petroleum
Construction industry
Equipment CNC Machining Center, CNC Lathes, CNC Milling Machines, Punching and drilling machines,  Stamping machines
Precision Processing CNC machining, CNC turning and milling, laser cutting, drilling, grinding, bending, stamping, welding

 

 

Roller size

 No. Standard Diameter Length Range
(mm)
Bearing Type
Min-Max
Shell Thickness of Roller
   mm Inch      
1 63.5 2 1/2 150-3500 203 204 3.0mm-4.0mm
2 76 3 150-3500 204 3.0mm-4.5mm
3 89 3 1/3 150-3500 204 205 3.0mm-4.5mm
4 102 4 150-3500 3.2mm-4.5mm
5 108 4 1/4 150-3500 306 3.5mm-4.5mm
6 114 4 1/2 150-3500 306 3.5mm-4.5mm
7 127 5 150-3500 306 3.5mm-5.0mm
8 133 5 1/4 150-3500 305 306 3.5mm-5.0mm
9 140 5 1/2 150-3500 306 307 3.5mm-5.0mm
10 152 6 150-3500 4.0mm-5.0mm
11 159 6 1/4 150-3500 4.0mm-5.0mm
12 165 6 1/2 150-3500 307 308 4.5mm-6.0mm
13 177.8 7 150-3500 309 4.5mm-6.0mm
14 190.7 7 1/2 150-3500 309 310 4.5mm-7.0mm
15 194 7 5/8 150-3500 309 310 4.5mm-8.0mm
16 219 8 5/8 150-3500 4.5mm-8.0mm

Advantage:
1.The life time: More than 50000 hours
2. TIR (Total Indicator Runout)
0.5mm (0.0197″) for Roll Length 0-600mm
0.8mm (0.571″) for Roll Length 601-1350mm
1.0mm (0. 0571 “) for Roll Length over 1350mm
3.Shaft Float≤0.8mm
4..Samples for testing are available.
5. Lower resistance
6. Small maintain work
7. High load capability
8. Dust proof & water proof

 

CONVRYOR ROLLER SHAFTS

We can produce roller shafts and We do customeized 
Product Size:φ10mm – 70mm
Max Length: 3000mm
Surface Tolerance: g6
Surface Roughness:0.8mm

 

Specification ASTM A108   AS1443
Steel Grade  Q235B,C1571,C1045(we can also do other steel grade per your requirments)
Size Φ18mm-φ62mm
Diameter Tolerance  ISO286-2,H7/H8
Straightness 2000:1

O.D  63.5-219.1mm
W .T  0.45-20mm 
Length  6–12m
Standard  SANS 657/3,ASTM 513,AS 1163,BS6323,EN10305
Material  Q235B, S355,S230,C350,E235 etc. 
Technique  Welded,Seamless
Surface oiled ,galvanized or painted with all kinds of colors according to client’s request.
 Ends  1.Plain ends,
 2.Threading at both side with plastice caps 
 3.Threading at both side with socket/coupling.
 4.Beveled ends, and so on
 Packing  1.Water-proof plastic cloth,
 2.Woven bags, 
 3.PVC package, 
 4.Steel strips in bundles 
 5.As your requirment
Usage   1.For low pressure liquid delivery such as water,gas and oil.
 2.For construction
 3.Mechanical equipment
 4.For Furniture 
Payment&Trade Terms  1.Payment : T/T,L/C, D/P, Western union 
 2.Trade Terms:FOB/CFR/CIF
 3.Minimum quantity of order : 10 MT (10,000KGS)
 Delivery Time  1.Usually,within10-20days after receiving your down payment.
 2.According to the order quantity 

 

Conveyor Roller Tube

Conveyor Roller Tube

Specification SANS657/3,ASTM513,AS1163,BS6323,EN10305 or equivalent international standard.
Steel grade S355/S230,C350,E235,Q235B
Sizes 63.5mm-219.1mm ect
Ovality tolerance of body ≤0.4mm(60.3mm-152.4mm)
≤0.5mm(159MM-168.3mm)
≤0.6mm(178mm-219mm)
Straightness 2000:1

 

 

 

if you are interesting in our products or want any further information, please feel free to contact us!

I am looking CZPT to your reply.

Best regards
CZPT
HangZhou CZPT TRADING CO., LTD 
1801 CZPT Building, No.268 Xierhuan Road, HangZhou City, ZHangZhoug Province, China

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Steel Grade: C1018 C1020
Standard: ASTM A108
Size: Od18mm—62mm
Surface Tolerance: G6
Max Length: Max 3000mm
Surface Roughness: 0.8
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

What maintenance practices are crucial for prolonging the lifespan of drive shafts?

To prolong the lifespan of drive shafts and ensure their optimal performance, several maintenance practices are crucial. Regular maintenance helps identify and address potential issues before they escalate, reduces wear and tear, and ensures the drive shaft operates smoothly and efficiently. Here are some essential maintenance practices for prolonging the lifespan of drive shafts:

1. Regular Inspection:

Performing regular inspections is vital for detecting any signs of wear, damage, or misalignment. Inspect the drive shaft visually, looking for cracks, dents, or any signs of excessive wear on the shaft itself and its associated components such as joints, yokes, and splines. Check for any signs of lubrication leaks or contamination. Additionally, inspect the fasteners and mounting points to ensure they are secure. Early detection of any issues allows for timely repairs or replacements, preventing further damage to the drive shaft.

2. Lubrication:

Proper lubrication is essential for the smooth operation and longevity of drive shafts. Lubricate the joints, such as universal joints or constant velocity joints, as recommended by the manufacturer. Lubrication reduces friction, minimizes wear, and helps dissipate heat generated during operation. Use the appropriate lubricant specified for the specific drive shaft and application, considering factors such as temperature, load, and operating conditions. Regularly check the lubrication levels and replenish as necessary to ensure optimal performance and prevent premature failure.

3. Balancing and Alignment:

Maintaining proper balancing and alignment is crucial for the lifespan of drive shafts. Imbalances or misalignments can lead to vibrations, accelerated wear, and potential failure. If vibrations or unusual noises are detected during operation, it is important to address them promptly. Perform balancing procedures as necessary, including dynamic balancing, to ensure even weight distribution along the drive shaft. Additionally, verify that the drive shaft is correctly aligned with the engine or power source and the driven components. Misalignment can cause excessive stress on the drive shaft, leading to premature failure.

4. Protective Coatings:

Applying protective coatings can help prolong the lifespan of drive shafts, particularly in applications exposed to harsh environments or corrosive substances. Consider using coatings such as zinc plating, powder coating, or specialized corrosion-resistant coatings to enhance the drive shaft’s resistance to corrosion, rust, and chemical damage. Regularly inspect the coating for any signs of degradation or damage, and reapply or repair as necessary to maintain the protective barrier.

5. Torque and Fastener Checks:

Ensure that the drive shaft’s fasteners, such as bolts, nuts, or clamps, are properly torqued and secured according to the manufacturer’s specifications. Loose or improperly tightened fasteners can lead to excessive vibrations, misalignment, or even detachment of the drive shaft. Periodically check and retighten the fasteners as recommended or after any maintenance or repair procedures. Additionally, monitor the torque levels during operation to ensure they remain within the specified range, as excessive torque can strain the drive shaft and lead to premature failure.

6. Environmental Protection:

Protecting the drive shaft from environmental factors can significantly extend its lifespan. In applications exposed to extreme temperatures, moisture, chemicals, or abrasive substances, take appropriate measures to shield the drive shaft. This may include using protective covers, seals, or guards to prevent contaminants from entering and causing damage. Regular cleaning of the drive shaft, especially in dirty or corrosive environments, can also help remove debris and prevent buildup that could compromise its performance and longevity.

7. Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance practices specific to the drive shaft model and application. The manufacturer’s instructions may include specific intervals for inspections, lubrication, balancing, or other maintenance tasks. Adhering to these guidelines ensures that the drive shaft is properly maintained and serviced, maximizing its lifespan and minimizing the risk of unexpected failures.

By implementing these maintenance practices, drive shafts can operate reliably, maintain efficient power transmission, and have an extended service life, ultimately reducing downtime and ensuring optimal performance in various applications.

pto shaft

How do drive shafts contribute to the efficiency of vehicle propulsion and power transmission?

Drive shafts play a crucial role in the efficiency of vehicle propulsion and power transmission systems. They are responsible for transferring power from the engine or power source to the wheels or driven components. Here’s a detailed explanation of how drive shafts contribute to the efficiency of vehicle propulsion and power transmission:

1. Power Transfer:

Drive shafts transmit power from the engine or power source to the wheels or driven components. By efficiently transferring rotational energy, drive shafts enable the vehicle to move forward or drive the machinery. The design and construction of drive shafts ensure minimal power loss during the transfer process, maximizing the efficiency of power transmission.

2. Torque Conversion:

Drive shafts can convert torque from the engine or power source to the wheels or driven components. Torque conversion is necessary to match the power characteristics of the engine with the requirements of the vehicle or machinery. Drive shafts with appropriate torque conversion capabilities ensure that the power delivered to the wheels is optimized for efficient propulsion and performance.

3. Constant Velocity (CV) Joints:

Many drive shafts incorporate Constant Velocity (CV) joints, which help maintain a constant speed and efficient power transmission, even when the driving and driven components are at different angles. CV joints allow for smooth power transfer and minimize vibration or power losses that may occur due to changing operating angles. By maintaining constant velocity, drive shafts contribute to efficient power transmission and improved overall vehicle performance.

4. Lightweight Construction:

Efficient drive shafts are often designed with lightweight materials, such as aluminum or composite materials. Lightweight construction reduces the rotational mass of the drive shaft, which results in lower inertia and improved efficiency. Reduced rotational mass enables the engine to accelerate and decelerate more quickly, allowing for better fuel efficiency and overall vehicle performance.

5. Minimized Friction:

Efficient drive shafts are engineered to minimize frictional losses during power transmission. They incorporate features such as high-quality bearings, low-friction seals, and proper lubrication to reduce energy losses caused by friction. By minimizing friction, drive shafts enhance power transmission efficiency and maximize the available power for propulsion or operating other machinery.

6. Balanced and Vibration-Free Operation:

Drive shafts undergo dynamic balancing during the manufacturing process to ensure smooth and vibration-free operation. Imbalances in the drive shaft can lead to power losses, increased wear, and vibrations that reduce overall efficiency. By balancing the drive shaft, it can spin evenly, minimizing vibrations and optimizing power transmission efficiency.

7. Maintenance and Regular Inspection:

Proper maintenance and regular inspection of drive shafts are essential for maintaining their efficiency. Regular lubrication, inspection of joints and components, and prompt repair or replacement of worn or damaged parts help ensure optimal power transmission efficiency. Well-maintained drive shafts operate with minimal friction, reduced power losses, and improved overall efficiency.

8. Integration with Efficient Transmission Systems:

Drive shafts work in conjunction with efficient transmission systems, such as manual, automatic, or continuously variable transmissions. These transmissions help optimize power delivery and gear ratios based on driving conditions and vehicle speed. By integrating with efficient transmission systems, drive shafts contribute to the overall efficiency of the vehicle propulsion and power transmission system.

9. Aerodynamic Considerations:

In some cases, drive shafts are designed with aerodynamic considerations in mind. Streamlined drive shafts, often used in high-performance or electric vehicles, minimize drag and air resistance to improve overall vehicle efficiency. By reducing aerodynamic drag, drive shafts contribute to the efficient propulsion and power transmission of the vehicle.

10. Optimized Length and Design:

Drive shafts are designed to have optimal lengths and designs to minimize energy losses. Excessive drive shaft length or improper design can introduce additional rotational mass, increase bending stresses, and result in energy losses. By optimizing the length and design, drive shafts maximize power transmission efficiency and contribute to improved overall vehicle efficiency.

Overall, drive shafts contribute to the efficiency of vehicle propulsion and power transmission through effective power transfer, torque conversion, utilization of CV joints, lightweight construction, minimized friction, balanced operation, regular maintenance, integration with efficient transmission systems, aerodynamic considerations, and optimized length and design. By ensuring efficient power delivery and minimizing energy losses, drive shafts play a significant role in enhancing the overall efficiency and performance of vehicles and machinery.

pto shaft

How do drive shafts handle variations in length and torque requirements?

Drive shafts are designed to handle variations in length and torque requirements in order to efficiently transmit rotational power. Here’s an explanation of how drive shafts address these variations:

Length Variations:

Drive shafts are available in different lengths to accommodate varying distances between the engine or power source and the driven components. They can be custom-made or purchased in standardized lengths, depending on the specific application. In situations where the distance between the engine and the driven components is longer, multiple drive shafts with appropriate couplings or universal joints can be used to bridge the gap. These additional drive shafts effectively extend the overall length of the power transmission system.

Additionally, some drive shafts are designed with telescopic sections. These sections can be extended or retracted, allowing for adjustments in length to accommodate different vehicle configurations or dynamic movements. Telescopic drive shafts are commonly used in applications where the distance between the engine and the driven components may change, such as in certain types of trucks, buses, and off-road vehicles.

Torque Requirements:

Drive shafts are engineered to handle varying torque requirements based on the power output of the engine or power source and the demands of the driven components. The torque transmitted through the drive shaft depends on factors such as the engine power, load conditions, and the resistance encountered by the driven components.

Manufacturers consider torque requirements when selecting the appropriate materials and dimensions for drive shafts. Drive shafts are typically made from high-strength materials, such as steel or aluminum alloys, to withstand the torque loads without deformation or failure. The diameter, wall thickness, and design of the drive shaft are carefully calculated to ensure it can handle the expected torque without excessive deflection or vibration.

In applications with high torque demands, such as heavy-duty trucks, industrial machinery, or performance vehicles, drive shafts may have additional reinforcements. These reinforcements can include thicker walls, cross-sectional shapes optimized for strength, or composite materials with superior torque-handling capabilities.

Furthermore, drive shafts often incorporate flexible joints, such as universal joints or constant velocity (CV) joints. These joints allow for angular misalignment and compensate for variations in the operating angles between the engine, transmission, and driven components. They also help absorb vibrations and shocks, reducing stress on the drive shaft and enhancing its torque-handling capacity.

In summary, drive shafts handle variations in length and torque requirements through customizable lengths, telescopic sections, appropriate materials and dimensions, and the inclusion of flexible joints. By carefully considering these factors, drive shafts can efficiently and reliably transmit power while accommodating the specific needs of different applications.

China best OEM Core Competencies Steel Roller High Temperature Resistant Shaft Machine Part Steel Bar Drive Shaft  China best OEM Core Competencies Steel Roller High Temperature Resistant Shaft Machine Part Steel Bar Drive Shaft
editor by CX 2024-05-08

PTO Drive Shaft

As one of the leading PTO drive shaft manufacturers, suppliers, and exporters of mechanical products, We offer PTO drive shafts and many other products.

Please contact us for details.

Manufacturer supplier exporter of PTO drive shaft.

Recent Posts